
AWS Serverless 
Examples



AWS Serverless Components



AWS Serverless - Previous Slides Recap

● In previous slides we analyzed AWS main serverless components
(https://www.slideshare.net/DimosthenisBotsaris/aws-serverless-introduction

● In these slides we will explore serverless architecture flows to solve real life 
issues.

● We try to define AWS Serverless components to use to achieve serverless flow, in 
production environment. 

● Implementation of some flows can be found on: 
https://github.com/arconsis/aws-network-microservices-warmup

https://www.slideshare.net/DimosthenisBotsaris/aws-serverless-introduction
https://github.com/arconsis/aws-network-microservices-warmup


Serverless Architectures

Pros

● Cost: Pay per invocation, no costs for unused servers
● Scaling: Auto scaling in response to spikes in traffic
● Productivity: Responsible only for your code, AWS handles managing and provisioning of 

servers

Cons

● Vendor lock-in: Seamlessly integration with other services from AWS, hard to move over to 
other Cloud Providers

● Testing: Difficult to perform integration tests
● Performance: Cold starts may add latency to some users 



3-tier Serverless Flow (1)

● Amazon API GW in a public subnet, as 
entry point of backend.

● Amazon API GW handles routing, 
aggregation, authorization.

● Amazon ECS in private subnets handles 
orchestration management & auto-scale 
of our backend.

● Amazon Fargate in private subnets 
used as our server.

● Amazon DynamoDB in private subnets 
is used as database.



3-tier Serverless Flow (2)

● Amazon API GW in a public subnet, as 
entry point of backend.

● Amazon API GW handles routing, 
aggregation, authorization.

● Amazon Lambda in private subnets, 
used as servers, which auto-scale.

● Amazon DynamoDB in private subnets 
is used as database.



3-tier Serverless Flow (3)
● Amazon API GW in a public 

subnet, as entry point of 
backend.

● Amazon API GW handles 
routing, aggregation, 
authorization.

● Amazon Lambda in private 
subnets, used as servers, which 
auto-scale.

● Amazon S3 is used to store files.
● S3 event notification will be fired 

towards SQS.
● Amazon DynamoDB in private 

subnets is used as database.



AWS Microservices Event Driven Flow (1)



AWS Microservices Event Driven Flow (2)

● Amazon API GW in a public subnet, as entry point of backend.
● Amazon API GW handles routing, aggregation, authorization.
● Amazon ECS in private subnets handles orchestration management & auto-scale of our 

backend.
● Amazon Fargate in private subnets used as our servers.
● Amazon SNS + SQS combination is used to create Fan-Out pattern, to serve an event to two or 

more downstream services.
● The SQS queue stores the event for asynchronous processing
● Amazon DynamoDB in private subnets is used as databases.



AWS S3 Events - FanOut (1)



AWS S3 Events - FanOut (2)

● Amazon S3 is used as file storage.
● Client uploads a file, which is stored to AWS S3.
● S3 event notification will be fired towards SNS.
● Amazon SNS + SQS combination is used to create Fan-Out pattern, to serve an event to two or 

more downstream services.
● Amazon SQS DLQ is used for messages that can't be processed (consumed) successfully.
● The SQS queue stores the event for asynchronous processing.
● Amazon Lambda in private subnets, used as servers, which auto-scale.
● Amazon DynamoDB in private subnets is used as databases.



AWS S3 Events - Lambda (1)



AWS S3 Events - Lambda (2)

● Amazon S3 is used as file storage.
● Client uploads a file, which is stored to AWS S3.
● S3 event notification will be fired towards Lambda.
● Amazon SQS is used for communication among Lambdas - decouple them!
● Amazon SQS DLQ is used for messages that can't be processed (consumed) successfully.
● The SQS queue stores the event for asynchronous processing.
● Amazon API GW in a public subnet, as entry point of backend.
● Amazon API GW handles routing, aggregation, authorization.
● Amazon Lambda in private subnets, used as servers, which auto-scale.
● Amazon DynamoDB in private subnets is used as databases.



AWS Real Time Analytics Stream Platform (1)



AWS Real Time Analytics Stream Platform (2)
● Amazon API GW in a public subnet, as entry point of backend and acts as Kinesis Proxy 

(decouple client from Kinesis)
● Amazon Kinesis Data Stream ingests and collects large amount of data records in real time.
● Amazon Kinesis Data Analytics used to transform and analyze streaming data in real time.
● Amazon Lambda in private subnets, used to add our business logic e.g. remove duplicate 

values.
● Amazon DynamoDB in private subnets is used as databases to store processed data.
● Amazon DynamoDB streams used to fire transactional logs events.
● Amazon SNS used to send sms / emails to clients.
● Amazon Kinesis Data Firehose used as ETL service that streams data into Amazon S3 into 

correct format.
● Amazon S3 used to store raw data.
● Amazon Athena used interactive query service to query / analyze data from S3



AWS Kinesis AutoScale

● Amazon CloudWatch Metrics used to 
capture metrics from Kinesis Data Stream.

● Amazon CloudWatch alarms 
(scale-up/down), used to decide when to 
scale.

● When scaling takes place, an event fired to 
Amazon SNS.

● Amazon Lambda async consumes SNS 
events and increase or decrease Amazon 
Kinesis shards and updates alarms with new 
shards counter.



Contact Info

● Arconsis:
○ Website: https://www.arconsis.com
○ Github: https://github.com/arconsis

● Dimos Botsaris:
○ Website: https://www.eldimious.com/
○ Github: https://github.com/eldimious
○ Email: botsaris.d@gmail.com

● Alexandros Koufatzis:
○ Github: https://github.com/akoufa
○ Email: akoufa@gmail.com

https://www.arconsis.com
https://github.com/arconsis
https://www.eldimious.com/
https://github.com/eldimious
mailto:botsaris.d@gmail.com
https://github.com/akoufa
mailto:akoufa@gmail.com



